วันเสาร์ที่ 26 สิงหาคม พ.ศ. 2560

บทที่ 1 อะตอมและตารางธาตุ

อะตอม คือหน่วยที่เล็กที่สุดของสสารที่ยังคงสภาพความเป็นสสารอยู่ได้
      แบบจำลองอะตอม ตามทฤษฏี มีอยู่  5 แบบ  คือ
1.แบบจำลองอะตอมของดอลตัน
ทฤษฎีอะตอมของดอลตันมีใจความสำคัญดังนี้
  1. สสารทุกชนิดประกอบด้วยอนุภาคที่เล็กที่สุดเรียกว่า อะตอม ซึ่งไม่สามารถแบ่งแยกต่อไปได้อีก
  2. อะตอมไม่สามารถสร้างขึ้นใหม่หรือทำให้สูญหายไปได้
  3. อะตอมของธาตุชนิดเดียวกันย่อมเหมือนกัน กล่าวคือมีสมบัติเหมือนกันทั้งทางกายภาพและทางเคมี
  4. อะตอมของธาตุชนิดเดียวกันย่อมมีมวลหรือน้ำหนักเท่ากัน
  5. สารประกอบเกิดจากการรวมตัวทางเคมีระหว่างอะตอมของธาตุต่างชนิดกันด้วยอัตราส่วนของจำนวนอะตอมเป็นเลขลงตัวน้อยๆ
  6. อะตอมของธาตุสองชนิดขึ้นไปอาจรวมกันเป็นสารประกอบด้วยอัตราส่วนที่มากกว่าหนึ่งอย่างเพื่อเกิดสารประกอบมากกว่า 1 ชนิด

           
 2.แบบจำลองอะตอมของทอมสัน
  เซอร์ โจเวฟ จอร์น ทอมสันได้ทำการทดลองเกี่ยวกับหลอดรังสีแคโทดเพิ่มเติมดังต่อไปนี้
การทดลองของทอมสัน
เซอร์โจเซฟ จอห์น ทอมสัน ได้ทดลองเพิ่มเติม โดยดัดแปลงหลอดรังสีแคโทดใหม่ (ดังรูป)
ผลการทดลอง     พบว่ามีจุดเรืองแสงหรือมีจุดสว่างบนฉากเรืองแสง
จากผลการทดลองทอมสันได้ตั้งสมมติฐานว่า 
จะต้องมีรังสีชนิดหนึ่งซึ่งมีประจุไฟฟ้าพุ่งเป็นเส้นตรงมาจากขั้วแคโทด มายังฉาก ซึ่งรังสีนี้อาจจะเกิดจากก๊าซที่บรรจุในหลอดแก้ว หรืออาจจะเกิดจากโลหะที่ทำเป็นขั้วแคโทด
     เพื่อทดสอบสมมติฐานที่ว่าอะตอมประกอบด้วยอนุภาคที่มีประจุและต้องการจะทราบว่าเป็นประจุไฟฟ้าบวกหรือลบทอมสันจึงได้ทดลองต่อไปโดยใช้สนามไฟฟ้าเข้าช่วย โดยยึดหลักที่ว่า  อนุภาคที่มีประจุไฟฟ้าจะต้องเบี่ยงเบนในสนามไฟฟ้า “ถ้าอนุภาคนั้นมีประจุไฟฟ้าบวกจะเบนเข้าหาขั้วลบของสนามไฟฟ้า  และถ้ามีประจุลบจะเบนเข้าหาขั้วบวก”
โดยเพิ่มขั้วไฟฟ้าในหลอดรังสีแคโทด ดังรูป

ผลการทดลองของทอมสัน
ากการทดลองพบว่า จุดสว่างบนฉากเรืองแสง เบนไปจากตำแหน่งเดิมโดยเบนเข้าหาขั้วบวกของสนามไฟฟ้า
ทอมสันสรุปว่า 
รังสีนั้นมีประจุไฟฟ้าและมีประจุไฟฟ้าเป็นลบเนื่องจากรังสีนี้เคลื่อนที่ออกจากขั้วแคโทดซึ่งเป็นขั้วลบ จึงเรียกรังสีชนิดนี้ว่า รังสีแคโทด และเรียกหลอดแก้วที่ใช้ทดลองว่า หลอดรังสีแคโทด
ทอมสัน ยังมีความสงสัยต่อไปว่า เกิดจากอะไร
การทดลองพิสูจน์สมมติฐานของทอมสัน
      สมมติฐานที่ว่า  
อะตอมประกอบด้วยอนุภาคเล็กๆที่มีประจุไฟฟ้าเป็นลบแต่ไม่ทราบว่าอนุภาคลบเหล่านี้เกิดจากก๊าซในหลอดรังสีแคโทด หรือเกิดจากขั้วไฟฟ้า
     ทอมสันได้ศึกษาสมบัติของรังสีแคโทดต่อไป  โดยหาอัตราส่วนระหว่างประจุต่อมวลของรังสีนั้น  ในตอนแรกทอมสันได้ทดลองเปลี่ยนก๊าซชนิดต่างๆ ในหลอดรังสีแคโทด  ผลการทดลองปรากฏผลเหมือนเดิม  และเมื่อทดลองเปลี่ยนชนิดของขั้วไฟฟ้าที่ใช้ทำแคโทด ผลการทดลองปรากฏผลเหมือนเดิม  และได้ค่าประจุต่อมวล(e/m)=1.7 x 108คูลอมบ์/กรัมเสมอไม่ว่าจะเปลี่ยนชนิดของการ หรือเปลี่ยนชนิดของโลหะที่ทำเป็นขั้วแคโทด
สรุปการทดลองของทอมสัน
     ท
อมสันทำการทดลองเกี่ยวกับการนำไฟฟ้าของก๊าซในหลอดรังสีแคโทด พบว่า ไม่ว่าจะใช้ก๊าซใดบรรจุในหลอดหรือใช้โลหะใดเป็นแคโทด  จะได้รังสีที่ประกอบด้วยอนุภาคที่มีประจุลบพุ่งมาที่ฉากเรืองแสงเหมือนเดิม  เมื่อคำนวณหาอัตราส่วนของประจุต่อมวล (e/m)ของอนุภาค จะได้ค่าคงที่ทุกครั้งเท่ากับ 1.76 x 108 คูลอมบ์ต่อกรัม 
       สรุปว่า อะตอมทุกชนิดมีอนุภาคที่มีประจุลบเป็นองค์ประกอบ เรียกว่า อิเล็กตรอน
ในค.ศ.1909เออาร์มิลลิแกนสามารถหาค่าประจุของอิเล็กตรอนได้โดยการทำการทดลองหยดน้ำมันซึ่งมีประจุภายใต้ความโน้มถ่วงของโลก
จากรูปพบว่าความต่างศักย์ที่เพิ่มขึ้นจะทำให้หยดน้ำมันที่มีประจุเคลื่อนที่ช้าลงเพราะถูกดึงดูดไว้ด้วยขั้วบวก และถ้าเพิ่มความต่างศักย์มากพอจนถึงค่าหนึ่ง จะทำให้หยดน้ำมันหยุดนิ่งได้ แสดงว่าแรงจากสนามไฟฟ้าและแรงเนื่องจากความโน้มถ่วงเท่ากันพอดี ถ้าเราทราบค่าความต่างศักย์และน้ำหนักของหยดน้ำมัน เราก็สามารถหาค่าประจุบนหยดน้ำมันได้ ซึ่งพบว่ามักมีค่าเป็นเลขจำนวนเต็มคูณกับค่าประจุที่เล็กที่สุดเสมอ (เป็นจำนวนเท่าของ 1.60 x 10-19 คูลอมบ์) เมื่อกำหนดค่าประจุของอิเล็กตรอนดังกล่าวและจากค่าอัตราส่วน(e/m)ของทอมสัน เราก็สามารถทราบได้ว่าน้ำหนักของอิเล็กตรอนคือ 9.11 x 10-31 ซึ่งปรากฎว่าเบากว่าอะตอมที่เบาที่สุด คือ ไฮโดรเจนราว 1/2000 เท่า
จากผลการทดลองเหล่านี้แสดงว่าอิเล็กตรอนในอะตอมเป็นหน่วยที่เล็กที่สุดและยังสนับสนุนว่าอิเล็กตรอนเป็นอนุภาคซึ่งแบ่งย่อยต่อไปไม่ได้อีกด้วย
การค้นพบโปรตอน
เนื่องจากอะตอมเป็นกลางทางไฟฟ้า และการที่พบว่าอะตอมของธาตุทุกชนิดประกอบด้วยอิเล็กตรอนซึ่งมีประจุไฟฟ้าเป็นลบ ทำให้นักวิทยาศาสตร์เชื่อว่าองค์ประกอบอีกส่วนหนึ่งของอะตอม จะต้องมีประจุบวกด้วย ออยแกน โกลด์สไตน์ (Eugen Goldstein) นักวิทยาศาสตร์ชาวเยอรมัน ได้ทดลองเกี่ยวกับหลอดรังสีแคโทด โดยดัดแปลงหลอดรังสีแคโทด ดังรูป
ผลการทดลองของโกสไตน์ เมื่อผ่านกระแสไฟฟ้า ปรากฏว่ามีจุดสว่างเกิดขึ้นทั้งฉากเรืองแสง ก. และฉากเรืองแสง ข.
      โกลสไตน์ได้อธิบายว่า  จุดเรืองแสงที่เกิดขึ้นบนฉากเรืองแสง ก. จะต้องเกิดจากที่ประกอบด้วยอนุภาคที่มีประจุไฟฟ้าบวก เคลื่อนที่ผ่านรูตรงกลางของแคโทด ไปยังฉากเรืองแสง  แต่ยังไม่ทราบว่ารังสีที่มีประจุไฟฟ้าบวกนี้เกิดจากอะตอมของก๊าซ หรือเกิดจากอะตอมของขั้วไฟฟ้า และมีลักษณะเหมือนกันหรือไม่
      โกลสไตน์ได้ทดลองเปลี่ยนชนิดของก๊าซในหลอดแก้วปรากฏว่าอนุภาคที่มีประจุไฟฟ้าบวกเหล่านี้มีอัตราส่วนประจุต่อมวลไม่เท่ากัน ขึ้นอยู่กับชนิดของก๊าซที่ใช้และเมื่อทดลองเปลี่ยนโลหะที่ใช้ทำเป็นขั้วไฟฟ้าหลายๆชนิดแต่ให้ก๊าซในหลอดแก้วชนิดเดียวกัน ปรากฏว่า ผลการทดลองได้อัตราส่วนประจุต่อมวลเท่ากันแสดงว่าอนุภาคบวกในหลอดรังสีแคโทดเกิดจากก๊าซ
ไม่ได้เกิดจากขั้วไฟฟ้า
       จากผลการทดลอง ทั้งของทอมสันและโกลด์สไตน์ ทำให้ทอมสันได้ข้อมูลเกี่ยวกับอะตอมมากขึ้น จึงได้เสนอแบบจำลองอะตอม ดังนี้
       อะตอมมีลักษณะเป็นทรงกลมประกอบด้วยอนุภาคโปรตอนที่มีประจุไฟฟ้าเป็นบวกและอนุภาคอิเล็กตรอนที่มีประจุไฟฟ้าเป็นลบ กระจัดกระจายอย่างสม่ำเสมอในอะตอมอะตอมที่มีสภาพเป็นกลางทางไฟฟ้าจะมีจำนวนประจุบวกเท่ากับจำนวนประจุลบ

บบจำลองอะตอมตามทฤษฎีอะตอมของทอมสันมีลักษณะดังรูป
แบบจำลองนี้อธิบายสมบัติต่างๆของธาตุรวมทั้งทฤษฎีพันธะเคมีด้วย ซึ่งก็ใช้ได้บ้างในบางกรณี จนในปี ค.ศ. 1911 แบบจำลองนี้ก็ยกเลิกไป เมื่อ อี อาร์ รัทเธอร์ฟอร์ด ศึกษาการกระเจิง (scattering) ของรังสีแอลฟาในแผ่นโลหะบางๆแล้วพบว่าแบบจำลองอะตอมของทอมสันใช้อธิบายผลการทดลองไม่ได้

อนุภาคมูลฐานของอะตอม
          ต่อมาในปี พ.ศ. 2475  เซอร์เจมส์ แชดวิกนักวิทยาศาสตร์ชาวอังกฤษได้ทดลองยิงอนุภาคแอลฟาไปยังอะตอมของธาตุต่างๆ และทดสอบผลการทดลองด้วยเครื่องมือที่มีความเที่ยงตรงสูง ทำให้มั่นใจว่าในนิวเคลียสมีอนุภาคที่เป็นกลางทางไฟฟ้าอยู่จริงและเรียกว่า นิวตรอน การค้นพบนิวตรอนช่วยให้ความรู้เกี่ยวกับนิวเคลียสของอะตอมชัดเจนขึ้น ทำให้ทราบว่าอะตอมประกอบด้วยอนุภาคที่สำคัญสามชนิด คือ อิเล็กตรอน โปรตอน และนิวตรอน  อนุภาคทั้งสามชนิดนี้เรียกว่า อนุภาคมูลฐานของอะตอม
 

อนุภาค
ประจุ(หน่วย)
ประจุ(C)
มวล(g)
มวล(g)
อิเล็กตรอน
-1
1.6 x 10-19
0.000549
9.1096 x 10-28
โปรตรอน
+1
1.6 x 10-19
1.007277
1.6726 x 10-24
นิวตรอน
0
0
1.008665
1.6749 x 10-24
     
    การเขียนสัญลักษณ์นิวเคลียร์
          เลขมวล คือผลบวกของโปรตอน และนิวตรอนในนิวเคลียส  
          เลขอะตอม คือ จำนวนโปรตอนในนิวเคลียส ซึ่ง =จำนวนอิเล็กตรอนในอะตอม
          ตัวอย่าง การเขียนสัญลักษณ์นิวเคลียร์
                                                                    

               

          ดังนั้น อะตอมของธาตุLithium  ( Li )       มีจำนวนโปรตอน = ตัว
  อิเล็กตรอน = ตัว
    และนิวตรอน = ตัว
         ไอออน(Ion)

    1. ไอโซโทป ( Isotope )
        หมายถึง  อะตอมของธาตุชนิดเดียวกัน มีเลขอะตอมเท่ากัน   แต่มีเลขมวลต่างกัน 
    2. ไอโซบาร์ (  Isobar )  
        หมายถึง ธาตุต่างชนิดกัน มีเลขมวลเท่ากัน แต่มีเลขอะตอมต่างกัน
    3. ไอโซโทน   ( Isotone ) 
        หมายถึง ธาตุต่างชนิดกัน แต่มีจำนวนนิวตรอนเท่ากัน
    4.ไอโซอิเล็กทรอนิกส์   (Isoelectronic) 
       หมายถึง   ธาตุหรือไอออนที่มีจำนวนอิเล็กตรอนเท่ากัน
4.แบบจำลองอะตอมของโบร์ 
แบบจำลองอะตอมของโบร์
          เนื่องจากแบบจำลองอะตอมของรัทเทอร์ฟอร์ดไม่ได้อธิบายว่าอิเล็กตรอนรอบนิวเคลียสอยู่ในลักษณะใดนักวิทยาศาสตร์จึงหาวิธีทดลองเพื่อรวบรวมข้อมูลเกี่ยวกับตำแหน่งของอิเล็กตรอนแล้วนำมาสร้างเป็นแบบจำลองวิธีการหนึ่งที่นักวิทยาศาสตร์ใช้ในการหาข้อมูลคือ การศึกษาสเปกตรัมของสารประกอบและธาตุซึ่งจะได้ศึกษาต่อไป
1.1.4.1  คลื่นและสมบัติของคลื่นแสง
          คลื่นชนิดต่างๆ เช่น คลื่นแสง คลื่นเสียง มีสมบัติที่สำคัญ 2 ประการคือ ความยาวคลื่น  (ดูรูป 1.10) ซึ่งหมายถึงระยะทางที่คลื่นเคลื่อนที่ครบ 1 รอบ มีหน่วยเป็นเมตร (m) หรือหน่วยย่อยของเมตร เช่น นาโนเมตร (m) และ ความถี่ของคลื่น หมายถึง จำนวนรอบของคลื่นที่เคลื่อนที่ผ่านจุดใดจุดหนึ่งในเวลา 1 วินาที ความถี่ของคลื่นจึงมีหน่วยเป็นจำนวนรอบต่อวินาที  


รูป 1.10 คลื่นและความยาวคลื่น

          คลื่นแสงเป็นคลื่นแม่เหล็กไฟฟ้าที่มีความถี่และความยาวคลื่นต่างๆ กัน ดังรูป 1.1

รูป 1.11 สเปกตรัมคลื่นแม่เหล็กไฟฟ้า

          แสงที่ประสาทตาของมนุษย์สามารถรับรู้ได้เรียกว่าแสงที่มองเห็นได้ ซึ่งมีความยาวคลื่นอยู่ในช่วง 400 - 700 นาโนเมตร แสงในช่วงคลื่นนี้จะประกอบด้วยแสงสีต่างๆ กัน ตามปกติประสาทตาของมนุษย์สามารถสัมผัสแสงบางช่วงคลื่นที่ส่องมาจากดวงอาทิตย์ได้ แต่ไม่สามารถแยกเป็นสีต่างๆ ได้ จึงมองเห็นเป็นสีรวมกันซึ่งเรียกว่า แสงขาว

1.1.4.2 สเปกตรัม
          ถ้าให้แสงอาทิตย์ซึ่งเป็นแสงขาวส่องผ่านปริซึมแสงขาวจากดวงอาทิตย์จะแยกออกเป็นแสงสีรุ้งต่อเนื่องกันเรียกว่า แถบสเปกตรัมของแสงขาว (ดูรูป 1.12)

 
รูป 1.12  การหักเหของแสงขาวเมื่อผ่านปริซึม

          ปรากฎการณ์นี้อธิบายได้ว่าเมื่อแสงเดินทางจากอากาศผ่านตัวกลางชนิดหนึ่งจะเกิดการหักเห ดังนั้นเมื่อแสงขาวส่องผ่านปริซึม แสงที่มีความยาวคลื่นต่างกันจะหักเหผ่านปริซึมได้ไม่เท่ากัน เกิดเป็นแถบสีรุ้งต่อเนื่องกันแสงสีรุ้งเหล่านี้มีความยาวคลื่นดังตาราง 1.2

ตาราง 1.2 แสงสีต่างๆ ในแถบสเปกตรัมของแสงขาว
สเปกตรัมความยาวคลื่น (nm)
แสงสีม่วง
แสงสีคราม - น้ำเงิน
แสงสีเขียว
แสงสีเหลือง
แสงสีแสด (ส้ม)
แสงสีแดง
400-420
420-490
580-590
590-650
590-650
650-700

          คลื่นแม่เหล็กไฟฟ้าที่มีความยาวคลื่นในช่วงอื่นก็เกิดการหักเหได้ แต่ไม่สามารถมองเห็นได้ด้วยตาเปล่า มักซ์ พลังค์ นักวิทยาศาสตร์ชาวเยอรมันได้ศึกษาพลังงานของคลื่นแม่เหล็กไฟฟ้าและได้ข้อสรุปเกี่ยวกับความถี่ของคลื่นนั้นว่า พลังงานของคลื่นแม่เหล็กไฟฟ้าจะเป็นสัดส่วนโดยตรงกับความถี่ของคลื่น ดังความสัมพันธ์ต่อไปนี้
                                            E   =  h V
          เมื่อ    E     คือพลังงาน มีหน่วยเป็น จูล
          h    คือค่าคงที่ของพลังค์ มีค่า \displaystyle 6.626x10^{ - 34} จูลวินาที
          V    คือความถี่ของคลื่นแม่เหล็กไฟฟ้า มีหน่วยเป็นเฮิรตซ์
                    นอกจากนี้ความถี่ของคลื่นยังมีความสัมพันธ์กับความยาวคลื่นดังต่อไปนี้
                                                        \displaystyle V = \frac{c}{\lambda }
          เมื่อ c  คือความเร็วของคลื่นแม่เหล็กไฟฟ้าในสูญญากาศ ซึ่งเท่ากับ \displaystyle 2.997x10^8 เมตรต่อวินาที (อาจใช้ \displaystyle 3.0x10^8 เมตรต่อวินาที) และ \displaystyle \lambda คือความยาวคลื่น ดังนั้นค่าพลังงานของคลื่นแม่เหล็กไฟฟ้าจึงคำนวนได้จากความสัมพันธ์ดังนี้
                                                        \displaystyle E = \frac{{hc}}{\lambda }
             5.แบบจำลองอะตอมแบบกลุ่มหมอก
           แบบจำลองอะตอมของโบร์ ใช้อธิบายเกี่ยวกับเส้นสเปกตรัมของธาตุไฮโดรเจนได้ดีแต่ ไม่สามารถอธิบายเส้นสเปกตรัมของอะตอมที่มีหลายอิเล็กตรอนได้จึงได้มีการศึกษาเพิ่มเติมจนได้แบบจำลองใหม่ที่เรียกว่าแบบจำลองอะตอมแบบกลุ่มหมอก
                                       

ไม่มีความคิดเห็น:

แสดงความคิดเห็น